Find the derivative of each function. **(24 points total)**

1. $f(x) = \arctan(\sec x)$

2. $g(x) = \sin^{-1}(e^x)$

3. $G(x) = e^{3x}(5x + 3)$

4. $R(x) = \frac{x - 1}{x + 5}$
5. Use logarithmic differentiation to find \(f'(x) \) if \(f(x) = \frac{(x + 5)^{3/2}(x - 1)^{5/2}}{(7x + 1)^{2/3}} \). (6 points)

6. Use implicit differentiation to find \(\frac{dy}{dx} \). Then find the slope of the line tangent to curve at \((-1, 1)\) (6 points)

\[
x^4 - x^2y + y^4 = 1.
\]
7. Record the derivatives of the following functions. (9 points total)

a. \(f(x) = \cos^{-1}(2x) \)
b. \(g(x) = 3^x \)
c. \(F(x) = \sin^3(4\pi x) \)
8. Rewrite the function that involves logarithms and then take the derivative of that re-written function. \textbf{(6 points total)}

\(f(x) = \ln \left[\frac{x + 3}{x - 7} \right] \)

Rewrite: \(f(x) = \)

Differentiate: \(f'(x) = \)

\(g(x) = \ln (e^{5x}(x + 1)) \)

Rewrite: \(g(x) = \)

Differentiate: \(g'(x) = \)

\(h(x) = \ln \sqrt{x + 8} \)

Rewrite: \(h(x) = \)

Differentiate: \(h'(x) = \)